Fully-Automatic Bayesian Piecewise Sparse Linear Models

نویسندگان

  • Riki Eto
  • Ryohei Fujimaki
  • Satoshi Morinaga
  • Hiroshi Tamano
چکیده

Piecewise linear models (PLMs) have been widely used in many enterprise machine learning problems, which assign linear experts to individual partitions on feature spaces and express whole models as patches of local experts. This paper addresses simultaneous model selection issues of PLMs; partition structure determination and feature selection of individual experts. Our contributions are mainly three-fold. First, we extend factorized asymptotic Bayesian (FAB) inference for hierarchical mixtures of experts (probabilistic PLMs). FAB inference offers penalty terms w.r.t. partition and expert complexities, and enable us to resolve the model selection issue. Second, we propose posterior optimization which significantly improves predictive accuracy. Roughly speaking, our new posterior optimization mitigates accuracy degradation due to a gap between marginal log-likelihood maximization and predictive accuracy. Third, we present an application of energy demand forecasting as well as benchmark comparisons. The experiments show our capability of acquiring compact and highly-accurate models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Bayesian Learning and the Relevance Vector Machine

This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classi cation tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vector machine' (RVM), a model of identical functional form to the popular and state-of-the-art `suppo...

متن کامل

Dynamic Frailty and Change Point Models for Recurrent Events Data

Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...

متن کامل

Sparse Linear Identifiable Multivariate Modeling

In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully Bayesian hierarchy for sparse models using slab and spike priors (two-component δ-function and conti...

متن کامل

Bayesian Generalized Kernel Models

We propose a fully Bayesian approach for generalized kernel models (GKMs), which are extensions of generalized linear models in the feature space induced by a reproducing kernel. We place a mixture of a point-mass distribution and Silverman’s g-prior on the regression vector of GKMs. This mixture prior allows a fraction of the regression vector to be zero. Thus, it serves for sparse modeling an...

متن کامل

Nonparametric Bayesian Identification of Jump Systems with Sparse Dependencies ⋆

Many nonlinear dynamical phenomena can be effectively modeled by a system that switches among a set of conditionally linear dynamical modes. We consider two such Markov jump linear systems: the switching linear dynamical system (SLDS) and the switching vector autoregressive (S-VAR) process. In this paper, we present a nonparametric Bayesian approach to identifying an unknown number of persisten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014